27 research outputs found

    Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics

    No full text
    Hydroponics is a soilless cultivation technique in which plants are grown in a nutrient solution typically made from mineral fertilizers. This alternative to soil farming can be advantageous in terms of nutrient and water use efficiency, plant pest management, and space use. However, developing methods to produce nutrient solutions based on local organic materials is crucial to include hydroponics within a perspective of sustainability. They would also allow hydroponics to be developed in any context, even in remote areas or regions that do not have access to commercial fertilizers. This emerging organic form of hydroponics, which can be qualified as “bioponics”, typically recycles organic waste into a nutrient-rich solution that can be used for plant growth. Many methods have been developed and tested in the past three decades, leading to greatly heterogenous results in terms of plant yield and quality. This review describes the main organic materials used to produce nutrient solutions and characterizes and categorizes the different types of methods. Four main categories emerged: a “tea”-type method, an aerobic microbial degradation method, an anaerobic digestion method, and a combined anaerobic-aerobic degradation method. The advantages and drawbacks of each technique are discussed, as well as potential lines of improvement. This aims at better understanding the links between agronomic results and the main biochemical processes involved during the production, as well as discussing the most suitable method for certain plants and/or contexts

    Mettre à profit l'arsenal des plantes: Les huiles essentielles comme moyen de gestion durable du mildiou de la pomme de terre causé par Phytophthora infestans - Une review

    No full text
    Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted

    Interaction volatiles entre l'orge et les champignons pathogènes dans le sol

    Get PDF
    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases.Rhizovo
    corecore